

Lafarge Richmond Kiln: Integral to BC and the Lower Mainland Waste Diversion

Geocycle – Facts and Figures

- Subsidiary of LafargeHolcim since the 1970's
- 2000 employees
- 50 countries on all continents
- 180 cement plants (co-processing) facilities
- 80 pre-treatment facilities
- 14M tonnes of waste treated by Geocycle every year leaving no residues
 - North America 3M tonnes
- ➤ 16M tonnes of C02 emissions prevented through recovery of energy from processed waste

Cement vs Concrete – There is a difference!

Cement

Water + Rocks +Sand

Concrete

Step 1. Creating a raw mix

- Raw materials are combined in exact proportions to create a chemically correct raw mix
 - Silica (sand, clay, shale) (foundry sand, sandblast...)
 - Alumina (clay, shale, bauxite) (catalysts, coal ash, WTR...)
 - Iron (mill scale, smelter slag)
 - Lime (limestone)
- Raw mix is pulverized in a mill

Creating a Raw Mix (1.6M mt/year)

Limestone: Quarry

Alumina: Coal Ash, Catalysts

Burning the raw mix

Cement

Silica: Sand, contaminated soils, blasting media,

Iron: Steel slag, millscales

Pulverizing Clinker to Cement w/Gypsum

Step 2. Burning the raw mix in a kiln

- Raw mix is burned in a kiln
- Material temperatures >1450 ⁰
 C
- End product is cooled to form pellet size material "Clinker"
- Alternate fuels are introduced here

Step 3. Pulverizing the Clinker

 Clinker is combined with a small percentage of gypsum and ground in a mill to produce the powder know as cement (Gypsum wallboard can be included)

Cement Manufacturing Process

Cement Kiln – Heating and Burning Zones

What is Co-Processing?

- Simultaneous recovery and recycling process
 - Combustible Waste = Energy
 - Mineral Waste = Raw Material
 - Developed in the late 1970's
- Unique waste management solution
 - Main objective is substitution of primary fossil fuels and raw materials in one single industrial process. The production of clinker and cement.
 - No ash residues
 - Main objective of incineration is disposal of waste. Ash residue left behind.
- Regulated process

Advantages of Co-Processing

- LCA demonstrates co-processing offers superior environmental performance to landfilling and incineration
 - Completely destroys waste material due to high temperature (1450C) and long residence time
 - Avoids formation of dioxin and furan due to temperature profile
 - Leaves no ash that needs to be landfilled
 - Reduced GHG emissions as waste is used to replace fuel
 - Preserves non renewalbe materials (fossil fuels and minerals)

Waste management hierarchy

Co-Processing Reduced GHG Emissions

Various Alternative Raw Materials

- Aluminum catalysts
- Fluid cracking catalysts
- Boiler ash
- Silica Desiccant
- Contaminated soils (metal impacted)
- Steel slags, copper slags, millscales
- Refractory bricks

- Spent blast abrasives
- Spent foundry sands
- Flyash/Bottom Ash
- Incinerator Ash
- Lime Sludge
- Alumina Sludges
- Filter Cakes
- And many more...

Various Alternative Fuels

- Wood waste
- Construction waste
- Non Recyclable Plastics
- Non Recycle Paper
- Coated paper
- Biomass such as seeds and shells, rice husks, coffee chaff
- Animal Meal
- Treated Wood
- Muncipal Solid Waste

- Roofing tear-off
- Tires whole or shred
- Carpet and Textiles
- Waste oils and solvent
- Rubber Waste
- Shredded tires
- Used oil
- Glycerin
- Hazardous Wastes

Alternative Fuel Criteria

- Chemically compatibility
- Physical characteristics, handling and process introduction
- Environmental considerations
- Health and safety factors
- Financial considerations
- Guidelines:
 - Moisture < 25% (can go to 40% but adds considerable cost, lower is better)
 - Chlorine < 0.4% (lower is better)</p>
 - Calorific Value (as received) > 12 Gj/T (higher is better)

Alternative Fuel Opportunities: C&D

- Construction and demolition debris, industrial solid waste, and other waste are ground for use as an alternative fuel/ coal replacement.
- Richmond, BC Plant

Alternative Fuel Opportunities: Wood residues

- Cedar shavings
- Mill planings
- Mill wastes
- Secondary manufacturing
 - Wood working (cabinetry etc)
- Green wood (hog) typically not suitable due to high moisture

New AF System (1/2)

- \$22M investment in co-processing system
- > 100,000 tonnes/year
- Goal is to substitute >50% of traditional (fossil) fuel
- Currently in Commissioning
- Highlights of system
 - ▶ Large storage hall unique in this industry and one of the largest we have in the world. This is a market differentiator
 - Completely enclosed system
 - Belt conveyor feeds to Pre-Calciner System. Much more robust than current pneumatic system. More forgiving for oversized contamination (no plugging)
 - Weigh feeder dosing system
 - Police screening the last line of defense before AF goes up the belt (star screens and magnets)

New AF System (2/2)

- Safety world class design in line with Geocycle ACERT procedures
 - Truckers drive through (no backing up) and offload quickly
 - World class fire suppression and explosion protection system
 - Limited horizontal surfaces built into design
 - Fireproof materials and waste segregation standards
 - Rigorous qualification standards
- Environmental protection
 - Includes fire water capture, rain water
 - Enclosed fugitive dust and windblow, noise reduction, aesthetics and dry storage
 - Alternative fuels subject to strict quality management system including lab testing

Cement Kiln Beneficial Recovery

- Cement kilns can provide complete and safe destruction for a variety of byproducts while recovering their inherent value.
- Beneficial recovery is aligned with the concept of sustainable development through the replacement of fossil fuels and conventional materials with byproducts.
- Proven safe use of byproducts at many cement plants worldwide.

Rustam Punja Geocycle Canada 778-833-1968

